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A compact series expansion method is described for evaluation atomic three-electron integrals 
which involve odd powers of the three interelectronic distances and Slater-type s orbitals. Only one- 
dimensional integrals appear in the final expression, and these are readily amenable to machine com- 
putation. Convergence of the series is discussed. 

Introduction 

Great interest has arisen in recent years over the extension of energy calcula- 
tions with the inclusion of electronic correlation to many-electron atoms, as a 
natural follow-on to the original Itylleraas technique for two-electron systems. 
These calculations depend upon the use of variational electronic wave functions 
which explicitly contain the interelectronic separations, since it is known that 
trial functions of this type converge more quickly towards the exact wavefunction 
than the conventional configuration-interaction functions. So long as only 
single-pair correlations are considered between the electrons, each term in the 
trial wavefunction will depend only upon one interelectronic distance r~k. When 
this is the case the calculation of the electronic potential energy for an atom with 
three or more electrons will involve the evaluation of both two- and three-electron 
integrals, of which the most difficult will be that three-electron integral whose 
integrand involves three different rik'S forming a triangle. Following Hylleraas, 
it is usual to construct the trial functions from a basis set of Slater-type orbitals, 
together with correlation factors containing low positive integral powers of the 
r~k'S. Certain calculations with Be have indicated that it may be necessary to go 
beyond single-pair correlations to double-pair correlations in the trial functions, 
in order to achieve the necessary precision in the calculation of the correlation 
energy. With such computations even more difficult four-electron integrals arise, 
but in this note we shall consider only the most difficult type of three-electron 
integral arising for a Slater-type s-orbital basis. This integral has been broken 
down into its component radial integrals in several publications [1-8], both for 
special cases and the general case, but it is felt that the new treatment outlined 
here is neater and will give rise to simpler (and therefore faster) computer pro- 
grammes for such integrals. 

General Formulae 

Denoting the volume element for integration over the whole of configuration 
space for electrons 1, 2, 3 by dz, we consider 

I = Idzr '~ l - t r~2-1r"3  3-a r12"12r~2~3~ r 1 3 " l ~ e x p ( - a l r l - a 2 r 2 - a 3 r 3 )  , (1) 
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with the usual nomenclature, where hi2 , n23 , n13 , are odd integers > - 1 ,  and 
nt, n2, n 3 are positive integers. 

To integrate over the electronic angular coordinates we expand each r'~ k in 
spherical harmonics [9] : 

�89 ~ ( r < ' ~ l + 2 p  
r72= ~ d(n,l,p)r~> - -  P~(cos012), n odd;  (2) 

p=O l=o \ r >  / 
where 

( -  �89 n), ( l -  �89 n)p ( -  k - �89 ~)~ (3) 
d(n,I,p)- (5), O + G  P! ' 

r(a + I) 
(a), = 

r(a) 

and 

Here r< and r > are the least and greatest in magnitude, respectively, of r 1 and r2, 
while 022 is the angle between them. 

For  the radial integrations we subdivide the integration region into six regions 
specified by the six possible permutations 

r~ < rj < rk, (4) 

where it is understood that (i, j, k) stands for any one of the six permutations of the 
numbers (1, 2, 3) amongst themselves. In subsequent formulae it will be understood 
that a sum over i ,j ,  k means a sum over these six permutations. 

Substituting (2) and (3) into (1), and remembering (4), we integrate over all 
angles to obtain: 

�89 ~(njk+l) �89 m rk rk 
I=(470 3 E Z E E ; drk I dr, 5 drj r f  r~ t r~ 

i,j,k p=o q=O s=o o o ~, (5) 
f (rjrk) exp(-- ai r i -- aj rj -- a k rk) , 

where 
L = n i +  l + 2 p , 

M = n j +  1 + n o - 2 p  + 2q, 

N = nk + l + nik + njk-- 2q , 
and rl 

d(nij, l, p) d(njk, l, q) d(nik , l, s) 
f ( u ) - -  f2g'n'"'n*k(U)= z=o (2l+ 1) 2 U2~+ 2s . (6) 

Integrating over rj, rk, in that order, after setting r~=ura, this reduces to 

M M I ( N + L + m + I ) !  
I=(4n)3  E E E ,bM+a-m 

i , j ,k  p,q,s m=O /'T/. 
1 

-{(a + b)u + c} ~ 
0 

where 
a = a  i , 
b = a j ,  

c = a  k 
g = N + L + m + 2 ,  

and the summation limits for p, q, s are as before. 

1] 
{au + b + c} g 

(7) 
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Since f(u) can be written as in (6), then the u integration in (7) may be expressed 
in terms of basic integrals of the type 

1 

f du u f If~ = (a u + fi)" ' (8) 
0 

which obey the recurrence relations 

eli+l,o= Ii, o -a -  fl tlo, 
~(g - 1) l i e  = f I $ - l , o - 1  - (c~ +/~)1 --O, (9) 

for fva0 ,  gva 1; and 

~(1 - g) Ioo -- (c~ + f i ) l - g  fll - g ,  g :/= 1,  (10) 

In closed form 

Ir176162 ~ ( h - g + 1 )  [(C~+fl)h-o+t--flh-~ (12) 
h=O 

but for computation (9) is preferable when it is numerically stable, 

Example  

As an example, we note that if naz = n23 = n13 = - 1 ,  then p = q = s =  0, and 

ffoo(~o 1-1(u) =- S(u) = ~ uZl/(21 + 1) 2 

l=o (13) 
1 

1 ;~lOge(1-kXU~ 
2u 1 --~uu /" 

0 
Similarly, if n12 = n32 = -n13 = 1, as considered by Burke [2], then we need 

only calculate 
fol, -1 ci1-1 /,11-1 _ 4,11-1 

O0 ~ J l l 0  ~ J 0 1 0  - - J l O 0  " 

By rearranging the series for f(u) somewhat we find 

4 ) ,14, fdoo = ~ - +  ( l + u  2) S ( u ) + ~  u - U  log e ~ , 

11o - 2u 2 + ~  1+  S ( u ) + ~  u3 - l o g e \ l _ u  j ,  

1 1( 1) 1(1 ) ,16, 
,~ s(u)+ 1 -  + - u  l o g . .  ~-i-2~- / 

Convergence 

By inspection of the u integration in (7), and by comparing (6) with (13), it is 
obvious that the infinite series resulting from term-by-term integration of f(u) 
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will c o n v e r g e  a t  leas t  as q u i c k l y  as the  series r e su l t ing  f rom t e r m - b y - t e r m  in t eg ra -  
t i on  of  S(u). T o  e x a m i n e  the  c o n v e r g e n c e  of  the  la t te r  we cons ide r  

1 

f du u" S(u) 
J = (~u  + B) ~ ' 

o 
where  n is a pos i t ive  in teger .  E x p a n d i n g  S(u) as in  (13), we f ind 

J= ~ Jt/(21+ 1) 2 , 

where  ~ = o 
1 

f duu n+21 fl-o 
J~ 

(eu+mvfl  < ( 2 l + 1 ) '  
0 

so t ha t  the  series for J conve rges  m o r e  q u i ck ly  t h a n  the  series 

1 
~ (21+  1)3 �9 t=O 

H e n c e  the  series for the  u i n t e g r a t i o n  in  (7) converges  at  least  as qu i ck ly  as the  la t te r  
series. 
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